
Dynamic Defense for Car-Borne LiDAR Vehicle Detection
Yihan Xu

Nanyang Technological University
Singapore

Dongfang Guo
Nanyang Technological University

Singapore

Qun Song
Singapore University of Technology

and Design
Singapore

Yang Lou
City University of Hong Kong

Hong Kong SAR, China

Yi Zhu
Wayne State University

Michigan, USA

Jianping Wang
City University of Hong Kong

Hong Kong SAR, China

Chunming Qiao
SUNY Buffalo
New York, USA

Rui Tan
Nanyang Technological University

Singapore

Abstract
Adversarial attacks with real objects or lasers on car-borne LiDAR-
based object detection are concerning. The existing defense ap-
proaches are often designed to address specific attacks and short of
considering adaptive attackers whomay adapt based on all available
information about the deployed defense to maximize attack effect.
This paper proposes Hyper3Def, a new defense for the function of
detecting vehicle objects, which uses a Hypernet to generate an
ensemble of multiple new detection models when needed at run
time. The detection results of these models are fused to give the
final result. As a dynamic defense, Hyper3Def revokes an impor-
tant basis of the adaptive attack, i.e., the object detection model
is needed to plan effective adversarial perturbations. Evaluation
based on open data and real-world experiments with embedded
system implementation show that, when confronting adaptive at-
tacks, Hyper3Def outperforms various baseline defenses including
the adversarial training, which is often cited as the state of the art.

CCS Concepts
• Computer systems organization → Embedded and cyber-
physical systems; • Security and privacy → Systems security.
ACM Reference Format:
Yihan Xu, Dongfang Guo, Qun Song, Yang Lou, Yi Zhu, Jianping Wang,
Chunming Qiao, and Rui Tan. 2025. Dynamic Defense for Car-Borne LiDAR
Vehicle Detection. In The 23rd Annual International Conference on Mobile
Systems,Applications and Services(MobiSys ’25), June 23–27, 2025, Anaheim,
CA, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3711875.3729157

1 Introduction
Light detection and ranging (LiDAR) is a crucial sensor for au-
tonomous driving. The point cloud yielded by the LiDAR carried by
the ego vehicle (i.e., the vehicle implementing autonomous driving)
captures the three-dimensional (3D) shapes and distances of the

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.
MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1453-5/2025/06
https://doi.org/10.1145/3711875.3729157

objects within its surroundings. The 3D object detection (3D-OD)
function, implemented based on LiDAR, has received increasing
research attention [30] and has been integrated into autonomous
driving products [1, 2, 5]. While deep learning is the state-of-the-art
approach to 3D-OD, it is vulnerable to adversarial perturbations
[16]. Research has shown that by injecting infrared lasers into the
LiDAR sensor [9, 18, 21, 33, 36] or placing real objects at certain
locations in the scene [7, 8, 39, 40, 45, 53, 54, 56], LiDAR sensing can
be misled. As autonomous driving is safety-critical, it is imperative
to understand and enhance the security of car-borne LiDAR sensing
against these physically implementable adversarial attacks.

Various defense approaches for LiDAR sensing have been pro-
posed. Earlier studies [32, 48, 52] apply data preprocessing such as
down-sampling and statistical outlier removal, hoping to destruct
the adversarial perturbations. However, these heuristic techniques,
which may be effective against naturally occurring noises and out-
liers, were not designed under the adversarial setting. Other defense
approaches use prior knowledge about the properties of authentic
objects’ point clouds (e.g., shadows and spatiotemporal consistency
across multiple frames) to detect attacks [12, 19, 20, 29, 36, 44, 46].
The adversarial training defense [16] includes adversarial samples
with correct labels into the model training dataset. However, both
the prior knowledge-based defense and adversarial training lack
generalizability in that they are only effective against the specific at-
tack they are designed to counter. Adversarial trainingmay consider
multiple attack types, but may suffer degraded defense performance
against individual attack types [38].

In this paper, we follow the dynamic defense strategy [11, 51] to
design a new defense approach for the ego vehicle’s function of
detecting vehicle objects nearby. Dynamic defense continuously
changes the system configurations to increase the attacker’s diffi-
culty in obtaining certain information needed about the protected
system to launch effective attacks. The prospect of dynamic defense
is based on an observation that, the laser-based and object-based
attacks require access to the sensing model, in either the black-box
or white-box form [8, 21, 54, 56]. The work [35] has shown that, for
image classification, adversarial attacks have limited transferability
to the models with distinct parameters. In this paper, we aim to
utilize a run-time 3D-OD model distinct from that obtained by the
attacker for defense. To realize this, we propose Hyper3Def based on

https://doi.org/10.1145/3711875.3729157
https://doi.org/10.1145/3711875.3729157
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://doi.org/10.1145/3711875.3729157


MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA Yihan Xu, Dongfang Guo, Qun Song, Yang Lou, Yi Zhu, Jianping Wang, Chunming Qiao, and Rui Tan

the Hypernet technique [17], which is a neural network model that
generates the weights of a model accomplishing a certain task. Ran-
domly seeding the generation leads to randomness of the weights,
which is undesirable to the attacker. In addition, as the generation
is fast, Hyper3Def can generate an ensemble of multiple models
for an inference process and yield their fused result to increase
robustness. Intuitively, it is harder for the attacker to fool multiple
models than a single model.

However, the design of Hyper3Def needs to address the following
issues. First, while Hypernet has been used for image classification,
training a Hypernet to generate the entire 3D-OD model with a
size much larger than image classification models bears signifi-
cant technical challenges. Second, the multiple models generated
by the Hypernet should be diverse, because similar models do not
present the desired complexity against the attacker. The third issue
is engendered when addressing the second issue. That is, when
the Hypernet is trained toward the joint goal of optimizing clean
accuracy (i.e., accuracy in the absence of attacks) and increasing
diversity of generated models, it becomes inferior in terms of clean
accuracy compared with the original model trained solely for op-
timizing clean accuracy. Fourth, as attacks are rare events, it is
desirable to avoid the unnecessary defense overhead when there is
no attack. This requires an effective attack detector to activate the
Hypernet-based defense.

To tackle the first issue, we select a subset of model layers as
the target of generation. Our extensive sensitivity study shows that
selecting the maximum preceding convolutional layers subject to
the convergence of Hypernet training is an effective strategy. To
address the second issue, we propose to perform in-batch indepen-
dent data augmentation and apply a similarity loss customized for
3D-OD. Both mechanisms are beneficial for the diversity of the
generated models. In addition, we propose a clustering-based ap-
proach to fuse the inference results of multiple generated models.
To address the third issue, we propose to calibrate the fused result
with the original model’s result. In the absence and presence of
attack, the calibration likely yields the original model’s result and
the fused result, respectively. This restores the clean accuracy effec-
tively. To address the fourth issue, we reuse the Hypernet technique
to design a lightweight ensemble-based attack detector and use its
positive detection result to activate the defense described above.

We evaluate Hyper3Def based on the KITTI 3D-OD dataset [15]
against three attacks, i.e., object-based car hiding (OCH), laser-
based car hiding (LCH), and laser-based car creating (LCC). We
employ six baselines including adversarial training and a heuristic
preprocessing defense called simple random sampling. The evalua-
tion is conducted under the strong adversarial setting of adaptive
attack. For instance, regarding the adversarial training defense, the
attacker can choose the most effective attacks among OCH, LCH,
and LCC based on the knowledge of which attack or the mix of all
attacks is adopted in adversarial training. A game-theoretic analysis
on the obtained results shows that the adversarial training against
the mix of all three attacks is the Nash equilibrium choice of the
defender, which, however, gives inferior defense performance com-
pared with Hyper3Def. This result shows that the effectiveness of
adversarial training needs to be scrutinized based on the threat
model. It is superior when the attacker has a sole option, but may
be inferior when the attacker has multiple options and is adaptive.

We also conduct real-world experiments with Hyper3Def imple-
mented on an embedded GPU platform. We launch OCH attacks
to hide a real vehicle from our victim LiDAR and an ego vehicle
operated by a third party in an organized challenge activity. We had
no information about the third-party’s vehicle, except its LiDAR
hardware model. Results show that Hyper3Def maintains good
defense performance as in our evaluation based on KITTI dataset.

A succinct summary of our contributions is as follows: (1) We
present a first dynamic defense system for LiDAR-based vehicle
detection against physically implementable adversarial attacks; (2)
Comparative evaluations based on open data and real-world exper-
iments provide comprehensive understanding on the effectiveness
of various defense approaches.

Paper organization: §2 reviews related work. §3 presents threat
model. §4 presents Hyper3Def. §5 and §6 present the results of eval-
uation based on open data and real-world experiments, respectively.
§7 discusses several relevant issues. §8 concludes this paper.

2 Background and Related Work
2.1 Adversarial Attacks on LiDAR Sensing
Adversarial attack has been extensively studied for image classi-
fication [10, 16, 22, 28] and 2D object detection [13, 27, 34, 42].
Regarding LiDAR sensing, existing studies [25, 26, 43, 47, 50] con-
sider point-wise attacks that shift or detach points or add new points
in the point cloud. However, directly tampering with the points
requires the attack to have real-time access to the victim vehicle’s
data processing pipeline, making it questionable in practicability.

To improve the attack realism, recent studies consider physical
attacks, including laser-based and object-based attacks, which are
more practical for real-world implementation. The laser-based at-
tacks [9, 18, 21, 33, 36] interfere with the victim LiDAR by injecting
infrared laser beams into the LiDAR sensor to add extra points
in a strategically positioned locality within the point cloud. The
object-based attacks [7, 8, 39, 40, 45, 54, 56] deploy real objects to
inject additional points into the point cloud, thereby spoofing Li-
DAR sensing tasks. The studies [7, 8, 39, 40, 45] design 3D-printable
adversarial objects; [54, 56] identify adversarial locations and place
common objects such as cardboards at such locations.

In terms of the attack effect on 3D-OD, existing physically im-
plementable attacks can be categorized into three types. The car
hiding attack disables the system to detect a real car in its sensing
range [21, 40, 53, 56]. The car creating attack misleads the system
to detect a “ghost car” that does not exist in reality [9, 21, 36]. The
undetected object attack is similar to car hiding attack, but to hide
non-vehicle objects such as traffic cones [8]. In this paper, we focus
on car creating and car hiding due to the prevalence of cars on roads
and the significant safety risks posed by their incorrect detection.

2.2 Defense for LiDAR Sensing
Defenses against adversarial attacks on LiDAR sensing can be cate-
gorized into prior knowledge-based defense, heuristic preprocessing,
and adversarial training.

Prior knowledge-based defense detects the adversarial at-
tacks by checking whether the point cloud data conforms to certain
prior knowledge. The defense approaches in [12, 20, 36, 44, 46]
identify ghost objects by checking whether the point cloud parts of



Dynamic Defense for Car-Borne LiDAR Vehicle Detection MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA

the objects conform to known physical properties of the authen-
tic objects [20, 36, 44] or demonstrate spatiotemporal consistency
across frames [12, 46]. The defense in [19] detects car hiding by
identifying 3D shadows projected by the hidden cars. However,
prior knowledge-based defenses have two drawbacks. First, their
effectiveness is often limited to specific attack types. For instance,
while point density check, as in [44], may detect ghost vehicles, it
is ineffective against car hiding. This allows attackers to circum-
vent the defense by switching to a different attack method. Sec-
ond, the complexity of designing and implementing these defenses
varies significantly depending on the attack being countered. De-
fenses against car creating typically inspect the points within each
bounding box given by the unhardened 3D-OD model and/or the
accompanying shadow to detect ghost cars. Differently, defenses
against hiding attacks, where the object is missed in the detection,
necessitate a computationally expensive search across the entire
point cloud frame to locate the hidden vehicles. This process is slow
(e.g., 36.5 seconds per scene [19]) and in general does not meet the
real-time processing requirements of autonomous driving.

Heuristic preprocessing purifies or perturbs the input data to
nullify the adversarial perturbations. The simple random sampling
(SRS) and statistical outlier removal (SOR) are two basic approaches
based on random sampling and clustering, respectively, to prepro-
cess point clouds [52]. The work [53] smoothens irregular lines
in LiDAR data to deal with a specific car hiding attack. The study
in [52] combines SOR with a point up-sampler to form a deep
learning-based denoiser to purify the input data. In [37, 48], a diffu-
sion network is used to noisify and then denoisify the point cloud,
aiming at destructing the adversarial perturbations. The denoiser-
and diffusion-based purification techniques [48, 52] are designed
to process the point cloud containing a single object. Differently, a
point cloud captured by a car-borne LiDAR is sparse and includes
multiple objects. This leads to a chicken-or-the-egg situation. That
is, to apply these purification techniques, we need to detect the ob-
jects first and then isolate the point cloud parts containing objects
as inputs to the purification, which, however, should be applied
before the object detection. SRS, which preprocesses the data by
randomly sampling a portion of the points, can process the entire
frame containing multiple objects. It is not subject to the above
dilemma. The defense proposed in [49], referred to as RL-Remove,
addresses this dilemma by introducing a mechanism to first extract
suspicious point clusters in front of the ego vehicle and then elim-
inate adversarial points through a reinforcement learning-based
search. However, it is specifically designed to counter hiding at-
tacks and does not address creating attacks. We adopt SRS and
RL-Remove as baseline approaches when evaluating Hyper3Def.

Adversarial training enhances model robustness by incorporat-
ing adversarial examples with their correct labels into the training
dataset. It achieves good defense performance against adversarial
perturbations that follow the same distributions of those contained
in the adversarially augmented training dataset [16]. However,
when confronting out-of-distribution adversarial perturbations,
its defense performance drops. In this paper, adversarial training is
employed as a baseline approach.

In summary, while existing defense methods demonstrate effec-
tiveness against specific attack types, most of them are vulnerable
when confronting adversaries capable of launching diverse attacks

Figure 1: Examples of attacks considered in this paper. Point
clouds are perceived by the victim vehicle.

or possessing knowledge of the defense mechanisms. This paper
aims to achieve better defense performance under a strong adver-
sarial setting where the attacker has all static information about
the deployed defense.

Under the recent certified robustness paradigm [24], a robustly
trained model defeats all adversarial perturbations with intensities
within a specified bound. However, robust training cannot scale
with model size. So far, it can only handle up to 100k neurons [24],
but LiDAR sensing models often have at least millions of neurons.

3 Threat Model
In this paper, we consider adaptive attacks, which are explained in
terms of attack types and attack capabilities.

Attack types. We consider physically implementable attacks
on LiDAR-based 3D-OD, including laser-based and object-based
attacks. In terms of attack effect, we focus on car hiding and car
creating. Figure 1 shows examples of the two attack types. The
vehicle carrying the victim LiDAR is regarded as the victim vehicle.
In this paper, ego vehicle and victim vehicle refer to the same vehicle.
For car hiding, the real vehicle to be hidden using adversarial objects
or laser injections is regarded as the target vehicle.

Attack capability. In this paper, the original model refers to the
3D-OD model that is optimized in terms of clean accuracy and is
not hardened against adversarial attacks. An undefended system
uses the original model to perform 3D-OD. We consider a strong
adversarial setting in which the attacker is adaptive, i.e., the at-
tacker attempts to optimize the attack effectiveness based on all
the obtained information including those related to defense. Taking
an undefended system for instance, the attacker may obtain the
original model in either white-box or black-box form. This can be
achieved by memory extraction or compromising the employees of
the vehicle manufacturer via social engineering. With the obtained
model, the attacker plans the attacks. Under the white-box setting,
the attacker can access the gradients of the model to optimize the
efficiency of the attack planning. Under the black-box setting, the at-
tacker queries the model when planning the attack. When a defense
is deployed, the attacker may obtain no or different amounts of
information about the defense. With the obtained information, the
attacker tries to adapt the attack to maximize attack effectiveness.



MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA Yihan Xu, Dongfang Guo, Qun Song, Yang Lou, Yi Zhu, Jianping Wang, Chunming Qiao, and Rui Tan

Figure 2: Hyper3Def inference workflow.

Since this attack adaptation depends on the details of the defense,
we will defer its description to when a defense is introduced.

4 Proposed Defense: Hyper3Def
This section presents our proposed defense called Hyper3Def. §4.1
overviews Hyper3Def. §4.2 presents the detailed design of the Hy-
pernet used by Hyper3Def. §4.3 presents the fusion and calibration
of the 3D-OD results given by the Hypernet-generated ensemble.
§4.4 presents an improved version of Hyper3Def that further inte-
grates a dynamic defense-based attack detector to avoid unneces-
sary execution of the ensemble in the absence of attacks.

4.1 Overview of Hyper3Def Inference
Figure 2 illustrates Hyper3Def’s inference workflow. Let Ψ(z|𝛀)
denote a Hypernet that generates the weights of the 3D-OD model
based on a random vector z ∈ R256 sampled from a normal distri-
bution, where 𝛀 is the weights of the Hypernet obtained in offline
training. For each dynamic defense process, the ego vehicle uses the
Hypernet to generate𝑀 distinct 3D-OD models to form an ensem-
ble of {𝚯1,𝚯2, . . . ,𝚯𝑀 }, where 𝚯𝑚 = Ψ(z𝑚 |𝛀). In addition, we let
𝚯0 denote the weights of the original model. Given a potentially ad-
versarial point cloud input x, each of the original model and the𝑀
models is executed to give a 3D-OD result: y𝑚 = Φ(x|𝚯𝑚), where
𝑚 ∈ [0, 𝑀], Φ represents the architecture of the 3D-OD model, y𝑚
is a collection of the 3D bounding boxes. Each bounding box is
described by a 7-tuple including a 3D coordinate, size (i.e., length,
width, height), and an orientation. Lastly, the results of the𝑀 mod-
els are fused and calibrated to yield the final vehicle detection result
denoted by y∗. Specifically, y∗ = 𝜉𝑐 (y0, 𝜉 𝑓 (y1, y2, . . . , y𝑀 )), where
𝜉 𝑓 and 𝜉𝑐 are the fusion and calibration functions. The 𝑀 should
be set to balance robustness and computation cost. The calibration
restores the clean accuracy in the absence of attacks. Note that as
the current design of Hyper3Def focuses on vehicle detection, the
𝜉 𝑓 only fuses vehicle detection results and skips all non-vehicle
objects detected. In §7, we will discuss the extension of Hyper3Def
to address non-vehicle objects.

We assume (require) that the model ensemble can be updated
at a speed faster than that at which the attacker can obtain the
latest model ensemble, plan and deploy the corresponding attack,
which takes at least several minutes. From our results obtained on
a car-borne class GPU, a single update can be completed within

Figure 3: Training of Hypernet used by Hyper3Def.

8.5ms. Thus, even if a low update frequency (e.g., every tens of
frames) is applied to reduce compute overhead, the update period
is only a few seconds, shorter than the time needed by the attacker.

Hyper3Def addresses adaptive attacks. If the attackers can only
obtain the original model, they plan the attack based on the original
model. If they obtain an outdated model generated by the Hypernet,
they optimize the perturbations against the obtained model. If they
obtain the Hypernet Ψ(·|𝛀), they generate an ensemble offline and
optimize the perturbations against the generated ensemble.

4.2 Hypernet Design and Training
4.2.1 Design Overview. A hypernet Ψ(z|𝛀) [17, 31] consists of an
encoder and multiple independent generators. The encoder maps
an input random vector z sampled from a multivariate normal distri-
bution to a latent code. The latent code is then divided into multiple
parts as the input for each generator. A generator outputs the pa-
rameters of a layer of the target model. In literature, the largest
models generated by Hypernet are in the scale of about one million
parameters [31, 35]. However, 3D-OD models are often in the scale
of more than five million parameters. To enable Hypernet training,
we employ Hypernet to generate a subset of layers of the 3D-OD
model, while the remaining layers are from the original model and
fixed during both the training and inference of Hyper3Def. The
selection of the generation target layers (including quantity and
positions) is a design factor to be evaluated in §5.

Figure 3 illustrates Hypernet training. In the 𝑡th forward pass,
for a given clean training frame, independent data augmentation
is performed to generate 𝑀 augmented frames as the inputs to
the𝑀 generated models. The𝑚th model, parameterized by 𝚯

𝑡
𝑚 , is

formed by the fixed layers from the original model and the dynamic
layers generated by the Hypernet with an independent random vec-
tor z𝑡𝑚 . The accuracy loss, denoted by 𝐿𝑜𝑠𝑠𝑡𝑎𝑐𝑐 , is computed based
on these models’ 3D-OD results and the ground truth. In addi-
tion, the similarity loss, denoted by 𝐿𝑜𝑠𝑠𝑡

𝑠𝑖𝑚
, is computed based

on the generated models’ parameters to reflect the diversity of



Dynamic Defense for Car-Borne LiDAR Vehicle Detection MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA

the models in favor of robustness against attacks. The final loss,
𝐿𝑜𝑠𝑠𝑡

𝑓 𝑖𝑛𝑎𝑙
= 𝐿𝑜𝑠𝑠𝑡𝑎𝑐𝑐 +𝐿𝑜𝑠𝑠𝑡𝑠𝑖𝑚 , is used to guide the backpropagation

for optimizing the Hypernet parameters 𝛀. The independent data
augmentation and the similarity loss drive the Hypernet training
to generate diverse models.

4.2.2 Independent Data Augmentation and Loss Design. Indepen-
dent data augmentation: In the existing applications of Hypernet
[17, 31, 35], during the training phase, the Hypernet-generated
models are fed with the same inputs. In this paper, we propose
to leverage the existing point cloud augmentation approaches to
diversify the inputs to the generated models. Specifically, in the 𝑡 th
forward pass of the training, the input to the𝑚th generated model,
denoted by x𝑡𝑚 , is obtained by independently performing a series
of data augmentation operations on the given training frame x𝑡 .
The operations include adding object noise, random global rotation,
random global flipping, and etc. As a result, the generated models
are fed with different inputs derived from the same training frame.

Similarity loss: Diversity of the 𝑀 generated models in each
forward pass is in favor of dynamic defense. The reason is as fol-
lows. Because each model is generated from an independent noise
sample z, if the diversity of the 𝑀 models is low, the diversity
among the models generated in different forward passes is also
low, resulting in less dynamism against adaptive attacks. Thus, we
use cosine similarity among the vectors flattened from the𝑀 mod-
els’ parameters (denoted by �̃�

𝑡

𝑚 , 𝑚 = 1, . . . , 𝑀) as a loss term:
𝐿𝑜𝑠𝑠𝑡

𝑠𝑖𝑚
= 2

𝑀 (𝑀−1)

(∑𝑀−1
𝑚=1

∑𝑀
𝑛=𝑚+1 exp

(
𝑆cos (�̃�

𝑡

𝑚, �̃�
𝑡

𝑛)
))
, where

𝑆cos (·, ·) represents the cosine similarity.
Accuracy loss: Let y𝑡𝑔𝑡 denote the ground truth bounding boxes

of all objects in the training frame x𝑡 . The accuracy loss is 𝐿𝑜𝑠𝑠𝑡𝑎𝑐𝑐 =
1
𝑀

∑𝑀
𝑚=1 𝐹𝑙𝑜𝑠𝑠 (y𝑡𝑔𝑡 ,Φ(x𝑡𝑚 |𝚯𝑡

𝑚)), where 𝐹𝑙𝑜𝑠𝑠 is the loss function
used to train the original model.

4.2.3 Model Diversity in Making Vehicle Detection Errors. It is un-
desirable if the generated models produce the same error, i.e., false
negative (FN) or false positive (FP), for the same input, because the
fusion of their identically erroneous results will also be wrong. We
adopt the following definitions of FN and FP for 3D-OD based on
the Intersection over Union (IoU) in the bird’s-eye view (BEV), de-
noted by IoU𝐵𝐸𝑉 . Specifically, given two bounding boxes 𝑏1 and 𝑏2,
IoU𝐵𝐸𝑉 (𝑏1, 𝑏2) = 𝑏1∩𝑏2

𝑏1∪𝑏2
, where 𝑏 represents 𝑏’s area projection on

the ground plane. A model makes an FN error regarding a real vehi-
cle with ground truth bounding box of 𝑏𝑔𝑡 if IoU𝐵𝐸𝑉 (𝑏, 𝑏𝑔𝑡 ) < 0.5
for every bounding box 𝑏 predicted by this model. Differently, a
vehicle bounding box 𝑏 predicted by the model is an FP error if
IoU𝐵𝐸𝑉 (𝑏,𝑏𝑔𝑡 ) < 0.5 for every vehicle’s ground truth bounding box
𝑏𝑔𝑡 . The 0.5 threshold is a standard setting in 3D-OD benchmarks
such as the KITTI 3D-OD dataset [15].

We use twometrics called IoU𝐹𝑁 and IoU𝐹𝑃 tomeasure the diver-
sity between twomodels inmaking vehicle detection errors [41].We
denote the FN sets of the𝑚th and 𝑛th models in processing multiple
point cloud frames by 𝐹𝑁𝑚 and 𝐹𝑁𝑛 . Then, IoU𝐹𝑁 =

𝐹𝑁𝑚∩𝐹𝑁𝑛

𝐹𝑁𝑚∪𝐹𝑁𝑛
,

where 𝑏 ∈ 𝐹𝑁𝑚 ∩ 𝐹𝑁𝑛 if 𝑏 is an FN of both models regarding
the same real vehicle in the same frame. Similarly, we denote
the FP sets of the 𝑚th and 𝑛th models by 𝐹𝑃𝑚 and 𝐹𝑃𝑛 . Then,

Table 1: Model diversity in making vehicle detection errors.

Between IoU𝐹𝑁 IoU𝐹𝑃

Original model & 20 generated models 0.375 0.688
Original model & 20 retrained models 0.364 0.675
20 generated models 0.432 0.705
20 retrained models 0.364 0.675

IoU𝐹𝑃 =
𝐹𝑃𝑚∩𝐹𝑃𝑛
𝐹𝑃𝑚∪𝐹𝑃𝑛 , where 𝑏𝑚 ∈ 𝐹𝑃𝑚 and 𝑏𝑛 ∈ 𝐹𝑃𝑛 form an el-

ement of 𝐹𝑃𝑚 ∩ 𝐹𝑃𝑛 if IoU𝐵𝐸𝑉 (𝑏𝑚, 𝑏𝑛) ≥ 0.5. When IoU𝐹𝑁 and
IoU𝐹𝑃 reach one, the two models exhibit the same error pattern in
detecting vehicles, whichmakes no contribution to the performance
of the fusion. Thus, lower IoU𝐹𝑁 and IoU𝐹𝑃 values are desired.

Table 1 presents the average IoUFN and IoUFP values regard-
ing vehicle detection under various settings: between the original
model and any of 20 generated models, between the original model
and any of 20 models trained from scratch, between any two of
the 20 generated models, and between any two of the 20 models
trained from scratch. These values are calculated while processing
154 frames in the absence of attacks. Note that the training from
scratch incorporates the independent data augmentation. From Ta-
ble 1, the generated models yield error patterns different from the
original model. Intuitively, this error pattern diversity is in favor of
counteracting non-adaptive attacks on the original model, because
FN and FP share some common nature with the effects of car hiding
and car creating attacks, respectively. From Table 1, the models
generated and trained from scratch achieve similar low IoU𝐹𝑁 and
IoU𝐹𝑃 values (i.e., about 0.4 in FN sets and 0.7 in FP sets). This is in
favor of counteracting adaptive attacks. An advantage of Hypernet
generation over training from scratch is the generation’s lower com-
pute overhead. From our measurement, generating𝑀 = 4 models
takes about 1.2 milliseconds on a GPU-equipped computer, while
the training from scratch of only one model takes about 10 hours
on the same computer.

4.3 Vehicle Detection Results Fusion and
Calibration

4.3.1 Fusion of Results. As a generated 3D-OD model shares some
layers with the original model, an adversarial example effective
against the original model will maintain a reduced level of effec-
tiveness against the generated model. However, the attack effect
varies across the generated models. Considering car hiding as an
example, some models may still miss the target vehicle, while oth-
ers give bounding boxes with distinct offsets. The fusion aims to
aggregate these noisy results to produce an attack-resistant and
accurate result. As illustrated in Figure 4, the fusion function 𝜉 𝑓
has the following three steps:

① Result filtering and stacking: As the current design of
Hyper3Def focuses on the perception of vehicle objects, we only
keep the detected vehicle objects in the generated models’ detection
results. If the attack causes misclassification, this filtering may miss
a true vehicle or wrongly include a non-vehicle object as a vehicle.
Such errors are to be rectified by the steps ② and ③ presented
shortly. The filtered results (denoted by ŷ𝑚 , where𝑚 = 1, . . . , 𝑀)
are stacked into a single map: ŷ = ŷ1 ∪ ŷ2 ∪ . . . ∪ ŷ𝑀 .



MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA Yihan Xu, Dongfang Guo, Qun Song, Yang Lou, Yi Zhu, Jianping Wang, Chunming Qiao, and Rui Tan

Figure 4: Fusion of the ensemble’s vehicle detection results.

Table 2: Clean precision of fusion & original model.

Average Precision (%) Fused Original model
Bounding Box (2D) 89.95 90.52

Angle of Arrival Score 90.12 90.32
Bounding Box (BEV) 88.91 89.94
Bounding Box (3D) 73.31 83.37

② Clustering: We apply DBSCAN [14] to group the center
positions of the bounding boxes in ŷ. We set the epsilon parameter
of DBSCAN to be 0.9m, which is about half of the typical vehicle
width, ensuring that two center positions separated by 0.9mmeters
or more are not considered neighbors. As the maximum number
of center positions for a detected vehicle is 𝑀 , we set another
parameter of DBSCAN to eliminate any cluster with less than𝑀 ×
min_samples_rate center positions. This helps remove the sparse
ghost cars. §5 will evaluate the setting of min_samples_rate.

③ Bounding box fusion: We fuse the bounding boxes in each
cluster by averaging their 3D coordinates and sizes. Fusing ori-
entation is more challenging, because orientation estimations are
susceptible to noises. We observe that most detected vehicles tend
to have orientations that are either aligned with, opposite to, or
perpendicular to the victim vehicle. Thus, based on the victim ve-
hicle’s orientation, we partition its surrounding plane into four
quadrants q1, q2, q3, and q4, where q1 encompasses orientations
deviating no more than 45° to the left or right from the victim ve-
hicle’s orientation. The q1 to q4, each spanning 90°, are arranged
counter-clockwise. We employ a two-step majority voting to re-
fine the orientation estimation. First, an initial vote identifies the
dominant quadrant group, e.g., the q1 and q3 in Figure 4(3), based
on the detected orientations of all bounding boxes. Next, a second
majority vote within the selected group confirms the predominant
direction. Any orientations contrary to this dominant direction are
adjusted by 180°.

4.3.2 Calibrating Fused Result. The generated ensemble may be
inferior in terms of 3D-OD accuracy compared with the original
model optimized solely for 3D-OD. Table 2 shows the average pre-
cision of the fused result and the original result in the absence of
attack. The average precision is based on four criteria widely em-
ployed for characterizing 3D-OD accuracy [15]. While the fusion
performs comparably to the original model in the first three metrics,
it underperforms in the last metric, which is the most stringent.

Given above, we propose a calibration algorithm shown in Al-
gorithm 1 to refine the output of the ensemble using the original
model’s result. It makes a match between every detected vehicle

Algorithm 1: Ensemble output calibration (i.e., 𝜉𝑐 )
Data: Original model output y0, ensemble’s fused output y
Result: Calibrated vehicle detection result
Configuration: Threshold 𝜂 to regard two bounding boxes
belonging to the same vehicle
for each bounding box 𝑏 in y do

if there exists a bounding box 𝑏0 in y0 such that
IoU_BEV(𝑏, 𝑏0) > 𝜂 then

use 𝑏0 to replace 𝑏 in y

return calibrated vehicle detection result y

Table 3: Example of the calibration effect. The calibration
tends to select the results with “∗” as the final outputs. (Null:
no vehicle in a specific bounding box)

Output type Attack type
No attack Hiding Creating

Ground truth existence Vehicle null Vehicle null
Original model’s result 𝑏0∗ null∗ null 𝑏0

Ensemble’s result 𝑏 null 𝑏∗ null∗
Calibrated result 𝒃0 null 𝒃 null

bounding box in fusion result y and a vehicle bounding box in
original model output y0. It replaces the 7-tuple box coordinates
of a bounding box in y with the coordinates of its matched bound-
ing box in y0 if they have a IoU𝐵𝐸𝑉 score higher than a threshold
which is 0.2 in our implementation. Table 3 presents an example
of the calibration effect under various attacks and ground truths.
The calibration tends to yield the original model’s result in the ab-
sence of attacks and the ensemble’s result in the presence of attacks.
Detailed evaluation will be presented in §5.2.

4.4 Hyper3Def+ with Attack Detection
We design two attack detectors that are sensitive to the car hid-
ing and car creating attacks, respectively. At run time, if either
or both of them claim(s) detection of attack, the Hyper3Def infer-
ence described in §4.1 is activated; otherwise, only the original
model is executed. In the rest of this paper, this improved version
of Hyper3Def that integrates attack detection is called Hyper3Def+.
Figure 5 illustrates the inference process of Hyper3Def+. The rest
of this section presents the design of the attack detector sensitive to
attack 𝐴, where 𝐴 represents car hiding or car creating. In Figure 5,
we use subscripts 𝐻 and 𝐶 to denote the symbols related to car
hiding and car creating, respectively.



Dynamic Defense for Car-Borne LiDAR Vehicle Detection MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA

Figure 5: Inference process of Hyper3Def+

The attack detector takes an intermediate feature map of the
original model as input, which is denoted by 𝑓 . For instance, in
our implementation, we use the feature map generated by a con-
volution layer of the original PointPillars model [23] as the 𝑓 . To
address attack 𝐴, where 𝐴 = 𝐻 and 𝐴 = 𝐶 refer to car hiding and
car creating, respectively, a Hypernet denoted by Ψ𝐴 is used to
generate𝑀𝐴 layers denoted by {𝛿𝐴1 , 𝛿

𝐴
2 , . . . , 𝛿

𝐴
𝑀𝐴

}. The Ψ𝐴 is differ-
ent from the Hypernet Ψ presented in §4.2. The Hypernet Ψ uses
multiple generators to generate multiple layers at once for a single
model, whereas Ψ𝐴 uses the same generator to generate each of
the𝑀𝐴 layers with the same structure. Each of the𝑀𝐴 layers pro-
cesses the input to produce a new feature map 𝛿𝐴

𝑖
(𝑓 ), 𝑖 ∈ 1, . . . , 𝑀𝐴 .

We define the attack indicator denoted by 𝐼𝐴 (𝑓 ) based on the av-
erage pair-wise cosine similarity between the new feature maps,
i.e., 𝐼𝐴 (𝑓 ) = 1 − 2

𝑀𝐴 (𝑀𝐴−1)
∑𝑀𝐴−1
𝑖=1

∑𝑀𝐴

𝑗=𝑖+1 𝑆cos (𝛿
𝐴
𝑖
(𝑓 ), 𝛿𝐴

𝑗
(𝑓 )). If

𝐼𝐴 (𝑓 ) is greater than a threshold 𝑇𝐴 , the detector claims presence
of attack. By using the Hypernet Ψ𝐴 here, the attack detector fol-
lows the dynamic defense strategy for hardened robustness against
the adaptive attackers who aim to bypass the detection. We ap-
ply contrastive learning to train the Hypernet Ψ𝐴 such that 𝐼𝐴 (𝑓 )
is high and low in the presence and absence of attack, respec-
tively. Specifically, for a set of 𝑁𝐴 contrastive training data pairs
{⟨𝑓 𝑛𝑐 , 𝑓 𝑛

𝐴
⟩|𝑛 = 1, . . . , 𝑁𝐴}, where 𝑓 𝑛𝑐 and 𝑓 𝑛

𝐴
represent clean fea-

ture map and adversarial feature map containing attack 𝐴, the con-
trastive loss is 𝐿𝐴 = 1

𝑁𝐴

∑𝑁𝐴

𝑛=1
[
𝐼𝐴 (𝑓 𝑛𝑐 ) − 𝜖𝐴 · 𝐼𝐴 (𝑓 𝑛𝐴 )

]
+𝛾𝐴 ·𝐿𝑜𝑠𝑠𝑛

𝑠𝑖𝑚
,

where 𝐿𝑜𝑠𝑠𝑛
𝑠𝑖𝑚

is the similarity loss computed based on the weights
of the𝑀𝐴 generated layers in the 𝑛th iteration, 𝜖𝐴 and 𝛾𝐴 are two
positive coefficients controlling the relative importances of the
three loss components. Inclusion of the similarity loss is beneficial
to dynamic defense, as discussed in §4.2.

Compared with the ensemble generated by Hyper3Def for 3D-
OD, the 𝑀𝐴 layers used for attack detection is lightweight. Thus,
with attack detection, the execution of the ensemble can be avoided
mostly in the absence of attack, unless the attack detection produces
a false positive. A concerning case is that the attacker induces a
false negative detection. Our evaluation in next section considers
such a strong attacker who constructs the perturbations to induce
false negative detection and also mislead the original model.

5 Evaluation with Open Data
5.1 Settings and Methodology
Dataset: We use the KITTI 3D-OD dataset [15] to drive evaluation.
The ego vehicle in the dataset is the victim vehicle. For the car-
hiding attack, we randomly select 154 frames containing a vehicle
approaching from the opposite direction as the target vehicle. For

car creating, we randomly set a fake bounding box in the space of
each frame to launch the attack.

3D-ODmodel:We choose PointPillars [23] as the original model,
owing to its balanced performance and speed. We run PointPil-
lars and the associated defenses, implemented in Python 3.8 with
PyTorch 2.01. The default confidence threshold for a candidate
bounding box to be yielded is 0.2.

Attacks:We launch the following three attacks. (1) The object-
based car hiding (OCH) [56], a black-box attack, places objects
to inject adversarial points around the target vehicle to hide it
from detection. We use 3 adversarial cardboards with 0.5m side
length within a 1.6 × 1.6 × 0.6m3 space above the target vehicle’s
geometric center. Larger cardboards do not further improve attack
effectiveness much and become too obvious. (2) The laser-based
car hiding (LCH) [21], a white-box attack, injects 200 points within
a 1 × 1 × 1m3 space above the target vehicle’s geometric center
to hide it. Note that infrared lasers are stealthy to human vision
and injecting up to 200 points is achievable according to [21]. (3)
The laser-based car creating (LCC) [21], a white-box attack, injects
100 points within a 4.4 × 1.8 × 1.7m3 space to create a ghost car
detected by the victim vehicle.

Defenses: ForHyper3Def, by default, we set ensemble size𝑀 = 4,
min_samples_rate = 50%. For Hyper3Def+, we set the attack de-
tection ensemble size𝑀𝐴 = 2 and the attack detection thresholds
𝑇𝐻 = 0.5, 𝑇𝐶 = 0.8, which strikes a balance between the false posi-
tive and false negative rates in attack detection. We employ six base-
lines. (1) The Defenseless applies no defense mechanisms. (2) The ad-
versarial training on a specific attack, denoted by AdvTrain-specific,
adversarially trains the 3D-OD model against a specific attack de-
scribed earlier. Depending on the employed attack, it has three vari-
ants denoted by AdvTrain-specific (OCH), AdvTrain-specific (LCH),
and AdvTrain-specific (LCC). (3) The adversarial training on mul-
tiple attacks, denoted by AdvTrain-multiple, adversarially trains
the 3D-OD model against all the three attacks described earlier. (4)
The SRS [52] reviewed in §2.2 randomly samples a portion (50% in
our implementation) of the points to form the input to the 3D-OD
model. (5) The Static Ensemble uses𝑀 models that are trained from
scratch offline and remain fixed at run time. (6) RL-Remove [49]
uses a reinforcement learning-based search to identify potential
injected objects and remove the relevant points until the vehicle
is correctly detected. The result calibration technique presented in
§4.3.2 can be also integrated with the baseline defense approaches.

Evaluation metrics: We determine whether an attack is suc-
cessful by checking the IoU value. A car hiding is successful if no
detected bounding box has an IoU𝑋 value greater than a thresh-
old 𝜂 with the target vehicle’s ground truth bounding box; a car
creating is successful if at least one detected bounding box has an
IoU𝑋 value greater than 𝜂 with the aimed fake bounding box. The
criterion𝑋 can be one of those listed in Table 2. Based on the above,
we use the following two metrics to characterize the attack and
system performances. (1) Attack success rate (ASR) is the ratio of
frames where the attack is successful to the total number of frames
with attack on, where we adopt the IoU𝐵𝐸𝑉 criterion with 𝜂 = 0.3.
In the absence of defense, attack success rate suggests the effec-
tiveness of the attack. (2) Average Precision (AP) is the area under
the precision-recall curve regarding vehicle detection, where dif-
ferent points on the curve are associated with different confidence



MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA Yihan Xu, Dongfang Guo, Qun Song, Yang Lou, Yi Zhu, Jianping Wang, Chunming Qiao, and Rui Tan

Table 4: Vehicle detection performance in the absence of
attacks.

Defense Attack-free AP (%)
w/o calibration w/ calibration

Defenseless 83.37 n/a
SRS [52] 75.15 82.95

AdvTrain-specific (OCH) 81.78 83.19
AdvTrain-specific (LCH) 77.45 82.97
AdvTrain-specific (LCC) 76.20 81.16

AdvTrain-multiple 76.10 82.95
Static Ensemble (𝑀=4) 87.38 n/a

RL-Remove [49] 83.98 n/a
Hyper3Def 73.31 83.01
Hyper3Def+ 77.31 83.18

OCH: Object-based Car Hiding LCH: Laser-based Car Hiding
LCC: Laser-based Car Creating SRS: Simple Random Sampling

thresholds used by the 3D-OD model. A higher average precision
indicates better 3D-OD performance. The precision and recall are
based on the IoU3𝐷 criterion with 𝜂 = 0.7, which has been widely
adopted in 3D-OD benchmarks.

5.2 Performance in the Absence of Attacks
Table 4 shows the performance of the vehicle detection with a cer-
tain defense in the absence of attacks. Without result calibration,
most defense approaches lead to decreases in average precision ex-
cept Static Ensemble and RL-Remove. Note that each member model
of the Static Ensemble achieves similar average precision of Defense-
less. With our proposed results fusion method, the Static Ensemble
achieves even higher average precision of 87.38%. RL-Remove only
processes the point cloud clusters detected malicious. As a result,
its overall accuracy on attack-free data remains largely unaffected
compared with the defenseless system. Therefore, using the origi-
nal model’s result to calibrate Static Ensemble or RL-Remove brings
no additional benefit. We do not apply the result calibration to
either method. The Hypernet-generated 3D-OD models are inferior
compared with the original model in terms of average precision.
Hyper3Def+ achieves higher average precision than Hyper3Def,
as it usually uses the original model for clean inputs unless the
attack detector is wrongly triggered. In other words, the average
precision of Hyper3Def+ without calibration is a mix of the higher
attack-free average precision of the original model and the lower
attack-free average precision of the wrongly triggered Hyper3Def.

5.3 Defense Performance of Hyper3Def
For Hyper3Def, we consider three cases regarding the adaptive
attacker’s knowledge about the system, as illustrated by the left
part of Table 5.Case- 1○: The attacker obtains the original model𝚯0
and constructs the attack against it. Case- 2○: The attacker obtains
a 3D-OD model 𝚯1 (i.e., a member of the ensemble) generated
by Hyper3Def in the past and then constructs the attack against
it. Case- 3○: The attacker obtains the 𝚯0 and the Hypernet Ψ. By
following Hyper3Def’s workflow, the attacker uses Ψ to generate
an ensemble of 𝑀′ models. This 𝑀′ may be different from the 𝑀
used by Hyper3Def. The attacker optimizes the attacks against the

Table 5: ASR when the adaptive attacker obtains different
sets of knowledge about Hyper3Def.

Case Knowledge ASR (%)
𝚯0 𝚯1 Ψ OCH LCH LCC

1○ ✓ 5.19 3.90 4.24
2○ ✓ 9.24 4.75 17.25
3○ ✓ ✓ 14.29 6.69 24.19

𝚯0 : Original model; 𝚯1 : One generated model; Ψ: Hypernet

Table 6: ASR of Hyper3Def+ when attacker obtains different
sets of info about Hyper3Def+.

Case Knowledge ASR (%)
𝚯0 𝚯1 Ψ {𝛿𝐴1 , .., 𝛿𝐴𝑀𝐴

} Ψ𝐴 OCH LCH LCC
1○ ✓ 5.84 3.25 3.25
2○ ✓ 9.08 4.55 16.85
3○ ✓ ✓ 11.69 5.19 24.32
4○ ✓ ✓ 3.60 16.25 4.42
5○ ✓ ✓ 3.04 21.43 5.84
6○ ✓ ✓ ✓ 5.19 10.39 26.18

𝚯0 : Original model; 𝚯1 : One generated model; Ψ: Hypernet
Ψ𝐴 , {𝛿𝐴1 , . . . , 𝛿𝐴𝑀𝐴

}: Hypernet and generated layers for attack detection

𝑀′-model ensemble. Specifically, for white-box attacks (LCC and
LCH), the attacker tries to compromise the𝑀′-model ensemble by
averaging the gradients computed by the attack. For the black-box
attack OCH, the attacker uses the majority strategy to search for the
optimal positions that induce most models in a generated ensemble
to make mistakes. Compared with the perturbations constructed
against the original model, the perturbations constructed against
the 𝑀′-model ensemble are more transferable across the models
generated by Hyper3Def.

For Hyper3Def+, we consider the following extra cases regard-
ing the adaptive attacker’s knowledge about the attack detector,
which are summarized in the left part of Table 6. Case- 4○: The at-
tacker obtains a batch of generated layers used for attack detection.
Case- 5○: The attacker obtains the Hypernet used to generate the
attack detection layers. Case- 6○: The attacker has full knowledge
about the static information of Hyper3Def (i.e., 𝚯0 and Ψ) and the
Hypernet for attack detection (i.e., Ψ𝐴). In these extra cases, the
attacker constructs perturbations that can simultaneously bypass
the attack detection and mislead vehicle detection.

For the defenseless system, the OCH, LCH, and LCC attacks
achieve attack success rate of 64.9%, 69.5%, and 65.6%, respectively.
Table 5 shows attack success rates of OCH, LCH, and LCC under the
three cases of the adaptive attacker’s knowledge about Hyper3Def.
Compared with the attack optimized against a single model in
Case- 1○ or Case- 2○, the attack that obtains the Hypernet in Case-
3○ achieves higher attack success rate. Nevertheless, Hyper3Def
reduces attack success rate compared with the defenseless system.

Table 6 shows the results when Hyper3Def+ is deployed. For
the car hiding attacks (OCH and LCH), the joint attacks on the
attack detection and Hyper3Def are generally more threatening
than those merely on Hyper3Def. The most threatening OCH and
LCH, which achieve attack success rates of 11.69% (Case- 3○) and



Dynamic Defense for Car-Borne LiDAR Vehicle Detection MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA

Table 7: ASR (%) of attacks under different defenses.

Defense Attack
OCH LCH LCC Worst

Defenseless 64.90 69.48 65.58 69.48
SRS [52] 59.48 49.43 20.25 59.48

AdvTrain-specific (OCH) 7.14 27.27 71.43 71.43
AdvTrain-specific (LCH) 22.08 11.69 61.04 61.04
AdvTrain-specific (LCC) 88.50 77.20 5.60 88.50

AdvTrain-multiple 38.31 58.10 51.95 58.10
Static Ensemble (𝑀 = 4) 55.84 45.40 46.53 55.84

RL-Remove [49] 3.15 1.19 65.58 65.58
Hyper3Def 14.29 6.69 24.19 24.19
Hyper3Def+ 11.69 21.43 26.18 26.18

Bold number: Nash equilibrium of defense versus attacks.

21.43% (Case- 5○), are based on the original model 𝚯0. When the
attacker additionally obtains Ψ (Case- 6○), the attack success rates
drop. This is because that, the joint car hiding attack optimization
that tries to deal with two kinds of system dynamics from vehicle
detection and attack detection is too sophisticated. Differently, the
most threatening LCC uses all static information of Hyper3Def
and attack detection (Case- 6○). This is because, different from the
car hiding attack which needs to carefully plan the adversarial
perturbations according to the existing point clouds, the car creating
attack only needs to inject points to form a car contour. This makes
the joint optimization against the two dynamics tractable.

In the rest of this paper, we use the highest attack success rates
from Table 5 for Hyper3Def and Table 6 for Hyper3Def+ to charac-
terize their performance against each attack. This is conservative
from the defense perspective, which ensures no unfairness to other
compared defense approaches.

5.4 Comparison with Other Defenses
Table 7 shows the attack success rates achieved by the OCH, LCH,
and LCC attacks when different defenses are applied. Although SRS
reduces the effectiveness of all attacks, car hiding attacks’ attack
success rates of around 50% to 60% are concerning. If SRS is more
aggressive by dropping more points, its defense effectiveness will
increase but further worsen its low clean accuracy.

AdvTrain-specific demonstrates good defense effectiveness only
against the attack it is adversarially trained for, but limited effective-
ness against other attacks. For instance, when adversarially trained
for OCH, it reduces the attack success rate of OCH from 64.90% to
7.14%. However, it has comparatively reduced effectiveness against
LCH and concerning effectiveness against LCC. This is because,
when the 3D-OD model fits car hiding after adversarial training, it
less captures car creating on the opposite. Similar observations can
be found for AdvTrain-specific (LCH) and AdvTrain-specific (LCC).

The above results suggest a key limitation of AdvTrain-specific,
i.e., its defense performance is tied to the specific attack used during
the adversarial training. When the actual attack deviates from the
assumed attack, the defense performance may drop drastically. We
conduct an extra experiment to show this limitation. Specifically,
we control how much AdvTrain-specific (LCC) learns about the LCC
attack by adjusting the learning rate. Then, with the enhanced

3D-OD models, we measure the attack success rate of OCH and
LCH. Figure 6 shows the results. It also shows the average precision
without fused result calibration in the absence of attack. The varia-
tion in LCC’s attack success rate is due to the variation of learning
rate in the adversarial training. The declines of the AP-ASR curves
suggest that when the AdvTrain-specific overfits to an attack more,
it captures other attacks less. The increase of the AP-ASR curve is
consistent with the result in §5.2.

AdvTrain-multiple attempts to address the above problem by
including all the three attacks in the adversarial training. Specif-
ically, we collect equal amounts of adversarial training samples
from the three attacks, resulting in 3x total adversarial training
samples compared with that used by AdvTrain-specific. Because
car hiding and car creating pursue different adversarial goals, the
adversarial training against the two types of attacks alternate. For
the training against car hiding, OCH and LCH samples are mixed.
Table 7 includes the attack success rate of the three attacks on
the system enhanced by AdvTrain-multiple, which are mild. Al-
though AdvTrain-multiple is not particularly vulnerable to a certain
attack, its defense effectiveness to each attack is also not impres-
sive. In particular, AdvTrain-multiple exhibits lower defense per-
formance against an attack compared with the AdvTrain-specific
trained against the same attack. This is consistent with the result in
[38], which considers image classification and views perturbations
constructed based on different norms as different attacks. Our sce-
nario of addressing attacks with opposite goals is more challenging
than addressing common-goal attacks based on different norms.

Since the attacker has three options (OCH, LCH, LCC) and the
adversarial training defender has four adversarial training options,
we analyze the Nash equilibrium between them. After the defender
adopts one of the four options, the adaptive attacker can obtain the
enhanced model, test it with the three attack options, and choose
that with maximum attack success rate. We include the highest
attack success rate among the three attack options for each defense
option in the last column of Table 7. The rational defender should
choose AdvTrain-multiple with the minimum of the four maximum
attack success rates (i.e., 58.10%), which is the Nash equilibrium.
However, this equilibrium attack success rate is not significantly
better than that of SRS.

Static Ensemble does not achieve good defense performance,
because the adaptive attacker can still craft effective perturbations
after obtaining the static ensemble. Similar to adversarial training,
RL-Remove demonstrates strong defense effectiveness only against
the specific attack it is designed to counter, i.e., hiding attacks, but
offers no resistance against creating attacks.

For comparison, Table 7 also includes the results of Hyper3Def
and Hyper3Def+ presented in Table 5 and Table 6.When Hyper3Def
or Hyper3Def+ is deployed, the adaptive attacker should choose the
most effective attack, which is LCC, achieving attack success rate
of 24.19% or 26.18%, respectively. Compared with the attack success
rates of 59.48% under SRS, 58.10% under AdvTrain, and 65.58% of
under RL-Remove, Hyper3Def and Hyper3Def+ achieve the best
defense performance. Results in this section are obtained based on
the default cardboard size and laser injection points amount stated
in §5.1. Hyper3Def and Hyper3Def+ remain the best under a wide
range of settings. If we compare Hyper3Def and Hyper3Def+, the
defense performance of Hyper3Def+ is lower under some attacks.



MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA Yihan Xu, Dongfang Guo, Qun Song, Yang Lou, Yi Zhu, Jianping Wang, Chunming Qiao, and Rui Tan

10.0 12.5 15.0
ASR of LCC (%)

60

65

70

75

80

A
SR

 o
f O

C
H

 / 
LC

H
 (%

)

OCH
LCH
AP 77

78

79

A
tta

ck
-f

re
e 

A
P 

(%
)

Figure 6: Overfit effect of
AdvTrain-specific.

20 40 60 80 100
min_samples_rate (%)

0

10

20

A
SR

 (%
)

OCH
LCH
LCC

Figure 7: Impact of
min_samples_rate.

This is because Hyper3Def+ has a larger attack surface due to
the introduction of attack detector. However, the gap between the
worst attack success rates under Hyper3Def andHyper3Def+ is only
1.99%, much smaller than the gaps from the baselines. Note that
Hyper3Def+ brings substantial computational overhead reduction
compared with Hyper3Def, as shown shortly.

5.5 Computational Overhead
We measure the average per-frame inference times of all compared
defense approaches on two computing platforms: (1) a workstation
equipped with a 5.20GHz CPU (Ryzen 7900X) and a 24GB GPU
(NVIDIA RTX 4090), (2) an NVIDIA Jetson AGX Orin 64GB (re-
ferred to as “Orin” hereafter), which operates at a power setting of
50 Watts. Note that we implement result calibration (cf. §4.3.2) for
all defense approaches to ensure good and comparable attack-free
average precision (cf. Table 4). Table 8 shows the results. As Hy-
per3Def+ and RL-Remove have two phases, i.e., attack detection and
the subsequent reactive defense, their per-frame inference times
are bi-polar depending on the existence of the attack.

First, we analyze the results obtained on the workstation. The
defenseless system’s inference time, 10.52ms, can be used as the
baseline to understand the additional overhead introduced by the
defense. SRS and AdvTrain with result calibration introduce extra
inference times of 8.83ms and 3.92ms, respectively. However, their
defense performances are unsatisfactory. The Static Ensemble and
Hyper3Def introduce similar extra inference times of about 18ms
and 20ms. In the absence of attack, Hyper3Def+ introduces an
extra inference time of 6.15ms, similar to that of AdvTrain. This
extra overhead is caused by the attack detection and the subsequent
defense triggered by false positives. As RL-Remove uses a heavy
attack detector, it incurs long inference times of 0.4 to 2.6 seconds.
Overall, in the absence of attack, Hyper3Def+ introduces similar
compute overhead as SRS and AdvTrain. In the presence of attack,
Hyper3Def+ exhibits a doubled compute overhead. As return, Hy-
per3Def+ reduces attack success rate by more than two folds as
shown in Table 7. The RL-Remove incurs tens of times compute
overhead compared with other defense approaches.

On a single Orin, the per-frame inference time of each system
increases by multiple folds, compared with that on the workstation.
However, the latency of our proposed Hyper3Def and Hyper3Def+
still have good potential to meet the real-time requirement of car-
borne object detection that is related to the data sampling interval.
For instance, in the absence of attacks, the projected processing
throughput of Hyper3Def+ on two units of Orin (a typical config-
uration of mainstream commercial vehicles with L2+ autonomy

Table 8: Average per-frame inference time (ms).

Defense Workstation Orin
Defenseless 10.52 80.00
SRS [52] 19.35 151.25
AdvTrain 14.44 126.32

Static Ensemble (𝑀 = 4) 28.57 231.33

RL-Remove [49] No attack 405.23 912.53
Attack 2643.12 8131.89

Hyper3Def (𝑀 = 4) 31.27 247.95
Hyper3Def+ No attack 16.69 132.28
𝑀 = 4,𝑀𝐴 = 2 Attack 33.45 264.50

[3, 6]) is 15.2 frames per second (FPS). This is higher than the
typical LiDAR sampling rate of 10 FPS. In real adoption, the speci-
fication of the computation hardware should be chosen to ensure
that Hyper3Def+ and other concurrent compute tasks fully meet
their respective real-time requirements.

5.6 Sensitivity Analysis for Hyper3Def
Hyper3Def has two key parameters, i.e., min_samples_rate used
by DBSCAN and the selection of dynamic layers. We conduct sen-
sitivity studies on them.

Min_samples_rate. We set𝑀 = 10 and evaluate the impact of
min_samples_rate on defense performance. As shown in Figure 7,
the attack success rate of car hiding and creating attacks exhibit
opposite trends as min_samples_rate changes, due to the opposite
nature of the two attacks. To balance defense performance without
prior knowledge of attack likelihoods, min_samples_rate can be
set to a value between 40% and 60%. If there is such prior knowledge,
the min_samples_rate can be set according to the overall risk. We
also find that when Min_samples_rate is fixed, the increase in𝑀

provides almost no improvement in defense performance.
Selection of dynamic layers. We adopt defense success rate

(DSR) as the metric of defense performance. It is the ratio of the
frames where the attack turns from successful to unsuccessful
because of the defense, to the total number of frames where the
attack is successful before the defense is applied. For each dynamic
layers selection, we employ all three attacks and report the average
attack success rate and defense success rate. The original model
PointPillars includes an encoder, a convolutional feature extraction
module, and a head output module. The average attack success rate
and defense success rate when various combinations of layer(s) are
selected for Hypernet generation are reported in Table 9. When
the encoder or head is selected, low defense success rates (13.2%
and 7.7%) are achieved, because they only contain around 1% and
6% neurons of the entire model and updating them leads to limited
dynamism. Then, we examine the layers in the feature extraction
module, consisting of Group-1, Group-2, and Group-3, along the
direction of inference. Selecting three layers in a group gives higher
defense success rate than doing so in a subsequent group. Selecting
one layer per group yields a defense success rate of 41.18%, whiles
selecting two increases it to 93.33%. Selecting three or more layers
in each group makes the convergence of the Hypernet training
challenging, as three layers in all three groups involve more than



Dynamic Defense for Car-Borne LiDAR Vehicle Detection MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA

Table 9: Defense performance vs. dynamic layers.

Dynamic layer(s) Avg ASR (%) Avg DSR (%)
None 66.65 -

Encoder 57.84 13.22
Head 61.53 7.68

3 layers of Group-1 40.83 38.73
3 layers of Group-2 47.51 28.72
3 layers of Group-3 55.65 16.50
1 layer per group 39.20 41.18
2 layers per group 4.44 93.33

Figure 8: AP of calibrated result vs. threshold for BEV-based
bounding box matching.

half of the entire model’s parameters. A general observation is that,
selecting more preceding feature extraction layers is beneficial to
defense performance. As selecting two layers per group gives the
highest defense performance, Hyper3Def adopts this setting.

Threshold of BEVmatching for result calibration. From the
result in Table 2, both the ensemble’s prediction and the original
model’s prediction have high average precisions in terms of the
BEV criterion. Therefore, as shown in Figure 8, when the threshold
𝜂 used in Algorithm 1 for matching two bounding boxes in terms
of BEV varies in a wide range from 0 to 0.6, the average precision
of the calibrated result is nearly unaffected.

6 Real-World Experiments
We conduct experiments on a real-world testbed with OCH attack.
In addition, we participate in an organized challenge activity, in
which a third-party vehicle is engaged as a data-recording victim
and the LiDAR hardware model is the only information made avail-
able to us before the experiment.

6.1 Experiments Setup
Attack setup. We use a crossover sport utility vehicle (SUV) as
OCH’s target vehicle. We employ two attack devices, each with a
cardboard (0.64m × 0.49m) mounted on a tripod. We follow [56]
to search cardboard positions for effective OCH. Different initial
conditions of the search can yield different cardboard positions.
Figure 9(a) shows the deployed OCH.

Victim LiDAR.We employ an OS1-128 unit which is a car-borne
128-channel LiDAR. We use a trolley cart to carry it and raise it to a
typical vehicle altitude via boxes, as shown in Figure 9(a), to mimic
the victim vehicle.

(a) Target vehicle (b) Our victim LiDAR (c) 3rd-party victim

Figure 9: Real-world experiment setup.

Third-party victimvehicle. It is a SUVwith anOS1-128mounted
on the top. Figure 9(c) shows a picture of the setup. The vehicle
was driven by a human driver during the experiment. We have no
other information about this vehicle, but have access to its LiDAR
data after the experiments.

6.2 Experiments with Our Victim LiDAR
First, we evaluate the attack and defense methods when our victim
LiDAR is positioned at a fixed point. We achieve 7 successful attack
trials with varying cardboard positions against the original model.
Then, we apply SRS and Hyper3Def+. SRS achieves a quite low
defense success rate of 14.28%, which is similar to the evaluation
results obtained on open data. With a high-resolution victim LiDAR,
SRS is less effective as the randomly down-sampled adversarial
point clouds remain dense enough to spoof the original 3D-OD
model. Hyper3Def+ successfully detects all the effective attacks,
and achieves a 71.43% defense success rate in recovering the system
from effective attacks. This defense success rate is lower than the
85.7% defense success rate achieved in §5, likely due to different
environments and attack conditions.

Second, we evaluate the attack and defense when the victim
LiDAR is at different positions, as depicted in Figure 10. The attack
is optimized for the case where the victim LiDAR is 10.37m from
the center of the target vehicle. When the victim LiDAR moves to
11 positions, represented by the blue dots in Figure 10, the attack
remains effective. Hyper3Def+ detects all attack attempts at 14 po-
sitions, including 3 ineffective. Among the 11 effective attacks, our
defense restores the system against 8 attacks, achieving a defense
success rate of 72.73%.

6.3 Challenge Activity with 3rd-Party Victim
We deploy the OCH attack designed in §6.2. Note that the optimal
positions for the adversarial objects depend on the victim LiDAR’s
altitude and pitch angle. However, these parameters of the third-
party victim vehicle are unknown and may be different from the
settings we use to optimize the attack. The third party drives the
vehicle toward the target vehicle. The attack is effective when the
victim vehicle is at 6 out of 17 positions and thus relatively less
effective compared with that in §6.2. This is probably due to the
mismatch of LiDAR altitude and pitch angle. Note that the third-
party victim vehicle is customized. In reality, the specifications and
operational parameters of the off-the-shelf vehicles can be obtained
and even public. When attackers launch attacks, they may optimize
the attacks based on these data. Nevertheless, in our experiment,
Hyper3Def+ defeats the attack when the victim vehicle is at all the



MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA Yihan Xu, Dongfang Guo, Qun Song, Yang Lou, Yi Zhu, Jianping Wang, Chunming Qiao, and Rui Tan

Figure 10: Results of real-world experiments with our victim LiDAR.

6 positions (i.e., 100% defense success rate, empirically) where the
attack is successful against the defenseless system.

7 Limitations
This section discusses several limitations of this study.

Defense for multi-modal fusion. Multi-modal fusion has re-
ceived increasing attention. However, LiDAR modality is still a pri-
mary sensing channel for many vehicle products due to its precise
3D sensing capability. Certain open-source (e.g., Autoware.Universe
[2]) and commercial (e.g., VueOne [4]) platforms default to LiDAR-
only perception pipelines, rendering this study essential. The multi-
modal perception may mitigate the effectiveness of the single-
modality attacks. However, recent studies [8, 55] have shown that
attacks jointly designed against multiple modalities can also spoof
the fusion system. The defense for each modality can be a basis
for forming the joint defense for the multi-modal fusion system.
Depending on the fusion strategy, our proposed defense can still
be used with different degrees of redesign. For instance, if a late
fusion strategy (i.e., decision fusion) [55] is employed for a fusion
system, the defense described in this paper can be applied directly
to the LiDAR-based detector and a new but similar defense for
camera-based object detector is needed. If an early or mid-stage fu-
sion strategy is employed, a new dynamic defense design is needed.
These required new defenses are meaningful future work items.

Defense for other target objects. In this paper, we focus on
vehicles as the target objects for implementing attacks, given their
prevalence on roads and the severe safety hazards associated with
their incorrect detection. However, other objects including pedes-
trians, bicycles [21], and traffic cones [8] can also be targeted in
attacks against LiDAR 3D-OD. Hyper3Def can be adapted to coun-
teract such attacks on these other target objects by adjusting the
result filtering and tuning the epsilon parameter in the result clus-
tering. We have implemented these changes and conducted a set
of preliminary experiments to understand the performance of Hy-
per3Def for two other object classes, i.e., pedestrians and cyclists.
The results are shown in Table 10. Hyper3Def reduces attack success
rate by 2.4X to 3X for cyclists and by 1.3X to 1.7X for pedestrians.
Compared with the 2.7X to 8X attack success rate reduction for
the vehicle objects as shown in Table 7, the defense performance
reduces with the object volume. This is probably correlated with
the lower clean accuracy of the original model and the Hypernet-
generated ensembles in detecting smaller objects. A pathway for
mitigating the defense performance reduction is to introduce more
augmented data of small objects for Hypernet training.

Model-agnostic attacks. If the attacker has the ability to inject
a pre-recorded point cloud about an object into the victim LiDAR

Table 10: ASRs of LCH and LCC attacks on small objects
under no defense or Hyper3Def defense.

Defense Cyclist Pedestrian
LCH LCC LCH LCC

Defenseless 50.0 60.0 40.0 85.0
Hyper3Def 16.6 25.0 30.0 50.0

sensor’s data output [21], the attack is agnostic to the 3D-ODmodel
and may render Hyper3Def ineffective. However, this strong attack
imposes high logistics requirements. To deal with this attack, we can
check whether the object’s point clouds across multiple consecutive
frames conform to the perspective changes of the LiDAR when the
ego vehicle moves. This prior knowledge-based defense further
complicates the logistics of the successful attack.

8 Conclusion
This paper proposes Hyper3Def, a dynamic defense against physical
adversarial attacks on car-borne LiDAR-based vehicle detection.
Hyper3Def updates the protected target, i.e., the object detection
neural network model, by generating part of its weights at run time.
This defensive update addresses the adaptive attackers who try to
optimize attacks based on the information about the system. The
advanced version of Hyper3Def further integrates an attack detector
to avoid unnecessary defense overhead in clean scenes. Evaluation
shows that Hyper3Def reduces the success rates of attacks by more
than two folds compared with heuristic defense and adversarial
training, and maintains clean accuracy as the original system.

Acknowledgments
The work by Xu, Guo, and Tan is supported by the National Re-
search Foundation, Singapore and DSONational Laboratories under
the AI Singapore Programme (AISG Award No: AISG2-GC-2023-
006). The work by Song is supported by the Ministry of Educa-
tion, Singapore, under its MOE AcRF Tier 1, and funded through
the SUTD Kickstarter Initiative (SKI) administered by SUTD (SKI
2021_06_11). The work by Lou and Wang is supported in part by
a project from Hong Kong Research Grant Council under GRF
11210622. The work by Qiao is supported in part by NSF CNS
2413876. However, any opinions, findings, and conclusions or rec-
ommendations expressed in this publication are those of the authors,
and do not necessarily reflect the views of the sponsors such as
NSF.



Dynamic Defense for Car-Borne LiDAR Vehicle Detection MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA

References
[1] 2025. Apollo Auto: perception-lidar-detection. https://github.com/ApolloAuto/

apollo/tree/master/modules/perception/lidar_detection.
[2] 2025. Autoware Universe. https://github.com/autowarefoundation/autoware.

universe.
[3] 2025. Lixiang L9. https://www.lixiang.com/configuration.html?carModel=L9.
[4] 2025. VueOne. https://www.vueron.com/vueone/.
[5] 2025. Waymo Driver. https://waymo.com/waymo-driver/.
[6] 2025. Xiaomi Unveils Five Core Automotive Technologies and Debuts Xiaomi SU7,

Completing the Human x Car x Home Smart Ecosystem. https://www.mi.com/
global/discover/article?id=3095

[7] Mazen Abdelfattah, Kaiwen Yuan, Z Jane Wang, and Rabab Ward. 2021. Towards
universal physical attacks on cascaded camera-lidar 3d object detection models.
In IEEE International Conference on Image Processing (ICIP).

[8] Yulong Cao, Ningfei Wang, Chaowei Xiao, Dawei Yang, Jin Fang, Ruigang Yang,
Qi Alfred Chen, Mingyan Liu, and Bo Li. 2021. Invisible for both camera and
lidar: Security of multi-sensor fusion based perception in autonomous driving
under physical-world attacks. In IEEE Symposium on Security and Privacy (SP).

[9] Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng Zhou, Won Park, Sara Ram-
pazzi, Qi Alfred Chen, Kevin Fu, and Z Morley Mao. 2019. Adversarial sensor
attack on lidar-based perception in autonomous driving. In ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS).

[10] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness
of neural networks. In 2017 IEEE Symposium on Security and Privacy (SP). Ieee,
39–57.

[11] Jin-Hee Cho, Dilli P Sharma, Hooman Alavizadeh, Seunghyun Yoon, Noam Ben-
Asher, Terrence J Moore, Dong Seong Kim, Hyuk Lim, and Frederica F Nelson.
2020. Toward proactive, adaptive defense: A survey on moving target defense.
IEEE Communications Surveys & Tutorials 22, 1 (2020), 709–745.

[12] Minkyoung Cho, Yulong Cao, Zixiang Zhou, and Z.Morley Mao. 2023. ADoPT:
LiDAR Spoofing Attack Detection Based on Point-Level Temporal Consistency.
In British Machine Vision Conference (BMVC).

[13] Andrew Du, Bo Chen, Tat-Jun Chin, Yee Wei Law, Michele Sasdelli, Ramesh
Rajasegaran, and Dillon Campbell. 2022. Physical adversarial attacks on an aerial
imagery object detector. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV). 1796–1806.

[14] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A density-
based algorithm for discovering clusters in large spatial databases with noise. In
KDD, Vol. 96. 226–231.

[15] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. 2015. The
kitti vision benchmark suite. URL http://www. cvlibs. net/datasets/kitti 2, 5 (2015),
1–13.

[16] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining
and harnessing adversarial examples. In International Conference on Learning
Representations (ICLR).

[17] David Ha, AndrewM. Dai, and Quoc V. Le. 2017. HyperNetworks. In International
Conference on Learning Representations (ICLR).

[18] Zhongyuan Hau, Kenneth T Co, Soteris Demetriou, and Emil C Lupu. 2021.
Object removal attacks on lidar-based 3d object detectors. In Automotive and
Autonomous Vehicle Security Workshop (AutoSec).

[19] Zhongyuan Hau, Soteris Demetriou, and Emil C Lupu. 2022. Using 3d shadows
to detect object hiding attacks on autonomous vehicle perception. In 2022 IEEE
Security and Privacy Workshops (SPW). IEEE, 229–235.

[20] Zhongyuan Hau, Soteris Demetriou, Luis Muñoz-González, and Emil C Lupu.
2021. Shadow-catcher: Looking into shadows to detect ghost objects in au-
tonomous vehicle 3d sensing. In European Symposium on Research in Computer
Security (ESORICS).

[21] Zizhi Jin, Xiaoyu Ji, Yushi Cheng, Bo Yang, Chen Yan, andWenyuan Xu. 2023. Pla-
lidar: Physical laser attacks against lidar-based 3d object detection in autonomous
vehicle. In IEEE Symposium on Security and Privacy (SP).

[22] Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. 2018. Adversarial examples
in the physical world. In Artificial intelligence safety and security. Chapman and
Hall/CRC, Chapter 8, 99–112. https://doi.org/10.1201/9781351251389

[23] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar
Beijbom. 2019. Pointpillars: Fast encoders for object detection from point clouds.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[24] Linyi Li, Tao Xie, and Bo Li. 2023. Sok: Certified robustness for deep neural
networks. In IEEE symposium on security and privacy (SP).

[25] Daizong Liu and Wei Hu. 2022. Imperceptible transfer attack and defense on
3d point cloud classification. IEEE transactions on pattern analysis and machine
intelligence 45, 4 (2022), 4727–4746.

[26] Daniel Liu, Ronald Yu, and Hao Su. 2019. Extending adversarial attacks and
defenses to deep 3d point cloud classifiers. In IEEE International Conference on
Image Processing (ICIP).

[27] Xin Liu, Huanrui Yang, Ziwei Liu, Linghao Song, Hai Li, and Yiran Chen.
2018. Dpatch: An adversarial patch attack on object detectors. arXiv preprint
arXiv:1806.02299 (2018).

[28] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2018. Towards deep learningmodels resistant to adversarial attacks.
In International Conference on Learning Representations (ICLR).

[29] Yanmao Man, Raymond Muller, Ming Li, Z Berkay Celik, and Ryan Gerdes. 2023.
That person moves like a car: Misclassification attack detection for autonomous
systems using spatiotemporal consistency. In USENIX Security Symposium.

[30] Rui Qian, Xin Lai, and Xirong Li. 2022. 3D object detection for autonomous
driving: A survey. Pattern Recognition 130 (2022), 108796.

[31] Neale Ratzlaff and Fuxin Li. 2019. HyperGAN: A Generative Model for Diverse,
Performant Neural Networks. In International Conference on Machine Learning
(ICML).

[32] Radu Bogdan Rusu, Zoltan CsabaMarton, Nico Blodow, Mihai Dolha, andMichael
Beetz. 2008. Towards 3D Point cloud based object maps for household environ-
ments. Robotics and Autonomous Systems (Nov 2008), 927–941.

[33] Hocheol Shin, Dohyun Kim, Yujin Kwon, and Yongdae Kim. 2017. Illusion
and dazzle: Adversarial optical channel exploits against lidars for automotive
applications. In Cryptographic Hardware and Embedded Systems (CHES).

[34] Dawn Song, Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir
Rahmati, Florian Tramer, Atul Prakash, and Tadayoshi Kohno. 2018. Physical
adversarial examples for object detectors. In 12th USENIX workshop on offensive
technologies (WOOT 18).

[35] Qun Song, Zhenyu Yan, Wenjie Luo, and Rui Tan. 2022. Sardino: Ultra-Fast
Dynamic Ensemble for Secure Visual Sensing at Mobile Edge. In International
Conference on Embedded Wireless Systems and Networks (EWSN).

[36] Jiachen Sun, Yulong Cao, Qi Alfred Chen, and Z Morley Mao. 2020. Towards
robust LiDAR-based perception in autonomous driving: General black-box ad-
versarial sensor attack and countermeasures. In USENIX Security Symposium.

[37] Jiachen Sun, JiongxiaoWang, Weili Nie, Zhiding Yu, Zhuoqing Mao, and Chaowei
Xiao. 2023. A critical revisit of adversarial robustness in 3D point cloud recogni-
tion with diffusion-driven purification. In International Conference on Machine
Learning. PMLR, 33100–33114.

[38] Florian Tramer and Dan Boneh. 2019. Adversarial training and robustness for
multiple perturbations. Advances in neural information processing systems 32
(2019).

[39] James Tu, Huichen Li, Xinchen Yan, Mengye Ren, Yun Chen, Ming Liang, Eilyan
Bitar, Ersin Yumer, and Raquel Urtasun. 2022. Exploring adversarial robustness of
multi-sensor perception systems in self driving. In Conference on Robot Learning
(CoRL).

[40] James Tu, Mengye Ren, Sivabalan Manivasagam, Ming Liang, Bin Yang, Richard
Du, Frank Cheng, and Raquel Urtasun. 2020. Physically realizable adversarial
examples for lidar object detection. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR).

[41] Kai Wang, Zhaopan Xu, Yukun Zhou, Zelin Zang, Trevor Darrell, Zhuang Liu,
and Yang You. 2024. Neural network diffusion. arXiv preprint arXiv:2402.13144
(2024).

[42] Xingxing Wei, Siyuan Liang, Ning Chen, and Xiaochun Cao. 2018. Transfer-
able adversarial attacks for image and video object detection. arXiv preprint
arXiv:1811.12641 (2018).

[43] Chong Xiang, Charles R Qi, and Bo Li. 2019. Generating 3d adversarial point
clouds. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

[44] Qifan Xiao, Xudong Pan, Yifan Lu, Mi Zhang, Jiarun Dai, and Min Yang. 2023.
Exorcising “Wraith”: Protecting LiDAR-based Object Detector in Automated
Driving System from Appearing Attacks. In USENIX Security Symposium.

[45] Kaichen Yang, Tzungyu Tsai, Honggang Yu, Max Panoff, Tsung-Yi Ho, and Yier Jin.
2021. Robust roadside physical adversarial attack against deep learning in lidar
perception modules. In ACM Asia Conference on Computer and Communications
Security (AsiaCCS).

[46] Chengzeng You, Zhongyuan Hau, and Soteris Demetriou. 2021. Temporal consis-
tency checks to detect LiDAR spoofing attacks on autonomous vehicle perception.
In Workshop on Security and Privacy for Mobile AI (MAISP).

[47] Jinlai Zhang, Lyujie Chen, Binbin Liu, BoOuyang, Qizhi Xie, Jihong Zhu,Weiming
Li, and YanmeiMeng. 2023. 3d adversarial attacks beyond point cloud. Information
Sciences 633 (2023), 491–503.

[48] Kui Zhang, Hang Zhou, Jie Zhang, Qidong Huang, Weiming Zhang, and Nenghai
Yu. 2023. Ada3diff: Defending against 3d adversarial point clouds via adaptive
diffusion. In Proceedings of the 31st ACM International Conference on Multimedia.
8849–8859.

[49] Yan Zhang, Zihao Liu, Chongliu Jia, Yi Zhu, and Chenglin Miao. 2024. An
Online Defense against Object-based LiDAR Attacks in Autonomous Driving. In
Proceedings of the 22nd ACM Conference on Embedded Networked Sensor Systems.
380–393.

[50] Tianhang Zheng, Changyou Chen, Junsong Yuan, Bo Li, and Kui Ren. 2019.
Pointcloud saliency maps. In IEEE/CVF International Conference on Computer
Vision (ICCV).

[51] Yu Zheng, Zheng Li, Xiaolong Xu, and Qingzhan Zhao. 2022. Dynamic defenses
in cyber security: Techniques, methods and challenges. Digital Communications
and Networks 8, 4 (2022), 422–435.

https://github.com/ApolloAuto/apollo/tree/master/modules/perception/lidar_detection
https://github.com/ApolloAuto/apollo/tree/master/modules/perception/lidar_detection
https://github.com/autowarefoundation/autoware.universe
https://github.com/autowarefoundation/autoware.universe
https://www.lixiang.com/configuration.html?carModel=L9
https://www.vueron.com/vueone/
https://waymo.com/waymo-driver/
https://www.mi.com/global/discover/article?id=3095
https://www.mi.com/global/discover/article?id=3095
https://doi.org/10.1201/9781351251389


MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA Yihan Xu, Dongfang Guo, Qun Song, Yang Lou, Yi Zhu, Jianping Wang, Chunming Qiao, and Rui Tan

[52] Hang Zhou, Kejiang Chen,Weiming Zhang, Han Fang,Wenbo Zhou, and Nenghai
Yu. 2019. DUP-Net: Denoiser and Upsampler Network for 3D Adversarial Point
Clouds Defense. In 2019 IEEE/CVF International Conference on Computer Vision
(ICCV).

[53] Shenchen Zhu, Yue Zhao, Kai Chen, Bo Wang, Hualong Ma, et al. 2024. AE-
Morpher: Improve Physical Robustness of Adversarial Objects against {LiDAR-
based} Detectors via Object Reconstruction. In 33rd USENIX Security Symposium
(USENIX Security 24). 7339–7356.

[54] Yi Zhu, Chenglin Miao, Foad Hajiaghajani, Mengdi Huai, Lu Su, and Chun-
ming Qiao. 2021. Adversarial attacks against lidar semantic segmentation in

autonomous driving. In ACM Conference on Embedded Networked Sensor Systems
(SenSys).

[55] Yi Zhu, Chenglin Miao, Hongfei Xue, Yunnan Yu, Lu Su, and Chunming Qiao.
2024. Malicious attacks against multi-sensor fusion in autonomous driving. In
Proceedings of the 30th Annual International Conference on Mobile Computing and
Networking (MobiCom). 436–451.

[56] Yi Zhu, Chenglin Miao, Tianhang Zheng, Foad Hajiaghajani, Lu Su, and Chun-
ming Qiao. 2021. Can we use arbitrary objects to attack lidar perception in
autonomous driving?. In ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS).


	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Adversarial Attacks on LiDAR Sensing
	2.2 Defense for LiDAR Sensing

	3 Threat Model
	4 Proposed Defense: Hyper3Def
	4.1 Overview of Hyper3Def Inference
	4.2 Hypernet Design and Training
	4.3 Vehicle Detection Results Fusion and Calibration
	4.4 Hyper3Def+ with Attack Detection

	5 Evaluation with Open Data
	5.1 Settings and Methodology
	5.2 Performance in the Absence of Attacks
	5.3 Defense Performance of Hyper3Def
	5.4 Comparison with Other Defenses
	5.5 Computational Overhead
	5.6 Sensitivity Analysis for Hyper3Def

	6 Real-World Experiments
	6.1 Experiments Setup
	6.2 Experiments with Our Victim LiDAR
	6.3 Challenge Activity with 3rd-Party Victim

	7 Limitations
	8 Conclusion
	Acknowledgments
	References

